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Abstract Cloud computing is a prominently distributed paradigm that offers a wide

variety of infrastructure, platform, and software services over the internet on

demand. However, the identification of trustworthy cloud services imposes diffi-

culties due to the multiplicity and the resemblance in their functionality. The

shortage of proficient trust management schemes for services prevents the large-

scale adoption of cloud computing paradigm by the public. In this paper, we propose

trust management middleware (TMM), a framework for trustworthy service selec-

tion in the cloud. TMM performs service selection by integrating subjective

assessment from users and objective assessment from service monitors. We pro-

posed a new covariance based algorithm to determine the credibility of user feed-

back. Also, in our model, a novel objective trust evaluation algorithm is proposed

based on prioritization of quality of service parameters depending on the user

preferences. The results show that the proposed framework improves the accuracy

of trust evaluation considerably and is more efficient in identifying trustworthy

cloud services as compared with the other relevant methods.

Keywords Service selection � Subjective trust � Objective trust � Satisfaction
level � Covariance

& Mukalel Bhaskaran Smithamol

smithamolm@acm.org

Sridhar Rajeswari

rajisridhar@gmail.com

1 Department of Computer Science and Engineering, Anna University, Chennai 600025, India

123

J Netw Syst Manage (2019) 27:66–92

https://doi.org/10.1007/s10922-018-9457-0

http://orcid.org/0000-0001-8425-9906
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-018-9457-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-018-9457-0&amp;domain=pdf
https://doi.org/10.1007/s10922-018-9457-0


www.manaraa.com

1 Introduction

Cloud services and cloud computing are the most commonly used facilities in the

world of information and communication technology (ICT). National Institute of

standards and technology (NIST) defines cloud computing as a ubiquitous on-

demand access to a shared pool of configurable resources that are elastically

provisioned over the Internet [1]. In the cloud, services are commoditized and

offered in a mode similar to the traditional utilities such as electricity, telephony,

and water [2]. A cloud service is made available to the users on demand via the

internet from Cloud Service Provider (CSP).

The economic benefits offered by the cloud computing along with its ability to

accelerate any technological enhancement has even forced the government and

public sector business organizations to adopt cloud services [3–5]. On the other

hand, with the augmentation of cloud computing popularity and service utilization,

security and trust concerns associated with the services have also emerged. The lack

of consumer trust is a key inhibitor to the adoption of cloud services [6–8]. The

establishment of trust associated with any cloud service depends on the performance

evaluation of that service. In-depth and accurate assessment of cloud service

performance is necessary for both consumers and providers which form an active

research area [9]. To select a cloud service, consumers are usually concerned with

the functions and Quality of Service (QoS) [10].

State-of-the-art approaches for trust based cloud service selection focus on

evaluating QoS of each service and recommending a service with highest matching

QoS parameters as per the user request [11–15]. However, in practice, it is

challenging to measure the QoS values accurately due to the dynamic nature of the

network and varying user requirements [16–18]. The trustworthiness of a CSP

depends on both subjective and objective assessment which is related to evaluation

QoS parameters associated with a specific service delivery [19–21]. Subjective trust

is related to user perceptions of CSP based on the preference and requirements

which are determined by the feedback given by users on Service Level Agreement

(SLA) and Quality of Experience (QoE) [22–24]. Objective trust assessments are

primarily based on extracting QoS values from SLA to determine service

performance and trust [25, 26]. Service selection methods integrating both

subjective trust and objective trust are necessary, especially when sensitive

information such as financial and health data are outsourced for computation.

Healthcare service demand data privacy, security and after-sales services, which are

hard to quantify and can only be assessed through subjective assessments. Besides,

the credibility of subjective or objective assessments given by users should be

evaluated to ensure service selection accuracy. However, the proposals based on the

above two methods ignored the satisfaction level of user preferences over the

various QoS parameters associated with service delivery.

In this study, we have identified the need for advanced multi-criteria based

measurement of user preferences method for determining service performance and

trust effectively. Prioritizing the selection criteria according to user preference is

important in objective trust assessment. Most of the literature uses static weight
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assignment to measure the relative importance of the QoS parameters and is not

correct as satisfaction varies widely due to the network and geographical conditions

even for the same service request. Developing algorithms which quantify both

objective and subjective trust by capturing user preferences is required for enhanced

service selection.

To achieve efficient cloud service selection, our work considers prioritizing

selection criteria based on user preference and context of service delivery in trust

evaluation. The proposed Trust Management Middleware (TMM) incorporates both

subjective trust and objective trust for cloud service trust evaluation. TMM performs

the dynamic evaluation of QoS arguments of a service using prioritization of user

preferences and the context of the service delivery. The use of prioritized

aggregation operator [27] enables TMM to assign dynamic weights to the QoS

attributes contributing to the accuracy of objective trust calculation. Also, the model

includes a novel covariance based method to determine the credibility of user

feedback. The proposed algorithm identifies dishonest rating and determines

subjective trust effectively. The small mean error rate and high transaction success

rate validates the practicability and efficiency of TMM. The major contributions of

this article are:

1. A novel dynamic Objective Trust Evaluation (OTE) algorithm is proposed and

evaluated. OTE uses prioritized aggregation operator to assess the transaction

trust dynamically based on cloud user QoS preferences.

2. A novel Subjective Trust Evaluation (STE) algorithm is proposed and

implemented. The algorithm uses covariance based approach to check the user

feedback credibility.

3. Using OTE and STE, an efficient trust management middleware is introduced

that recommend top-k trusted cloud services.

The rest of the paper is structured as follows. Section 2 provides an overall view

of related works on the subject of trust management in cloud services. Section 3

illustrates the proposed system architecture and algorithms in detail to perform

dynamic trust computation and service selection. Results and discussions in Sect. 4

provide a claim to the performance enhancement of trust computation using the

proposed algorithms. Finally, Sect. 5 provides a fruitful conclusion to work by

giving valuable insight into the future improvements.

2 Related Works

The industry and academia have already identified the need for regulation,

monitoring, and trust establishment in the cloud computing environments [11, 12].

In the literature, several frameworks are proposed for assessing trust relationship

from different perspectives. These frameworks mainly quantify trust from either

user perspective or service provider perspective. Most of the proposals in the
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literature determine trust based on historical records, feedback and QoS monitoring

[12, 28]. These models can be classified as subjective trust models, objective trust

models and models integrating both.

Paper [23] proposes the design and implementation of a reputation-based trust

management framework named Cloud Armor. The suggested framework is a

reliable cloud service recommendation system which computes trust mainly based

on the user feedback. The Cloud Armor platform evaluates the credibility of user

feedback based on majority consensus and feedback density. However, the

evaluation of uncertainty in the feedback is still a challenge. To manage the

uncertainty in trust evaluation, authors [29] proposed Bayesian trust model. Paper

[30] recommend a lightweight reputation measurement approach for cloud services

based on user feedback. The authors use fuzzy set theory to calculate the reputation

score of each serving. Paper [31] suggest a trust model based on SLA negotiation for

cloud marketplace. The customer has to accumulate the information regarding a

provider periodically from other customers to evaluate the new trust value and

reputation. It is a system of trust propagation. Nevertheless, feedback based trust

evaluation models need computationally effective algorithms to determine the

credibility of user feedback since it is affected by malicious user rating. As well, it

should be noticed that feedback based trust assessment alone is not sufficient to

define the final trust value of a cloud service.

In the literature of objective trust models, authors [32] proposed a QoS

prediction model for cloud service selection based on similarity ranking. A

personalized ranking and selection method was proposed in [33] based on

customer satisfaction. A multi-criteria decision-making technique to rank Cloud

services is proposed in [34]. In reality, rating-oriented approaches have difficulty

guaranteeing accurate ranking prediction due to missing or sparse rating data. To

address the reliability issues of QoS, monitoring tools were used and paper [35]

developed a trust evaluation framework for cloud providers. T-broker [36] uses a

lightweight feedback mechanism for adaptive trust calculation. Here, authors use a

hybrid and adaptive trust model to compute the overall trust degree of service

resources. Authors [37] present and implement SLA based trust management

system for the multi-cloud environment. Paper [38] evaluate trust by considering

the influence of opinion leaders and removing troll effect in the cloud

environment. Actual QoS of cloud services is affected by the unpredictable net-

work conditions [39–41]. Also, it is challenging to monitor and quantify QoS

parameters such as security and privacy. Therefore, merely using QoS monitoring

to assess the trustworthiness may not provide a complete solution to the problem

of trustworthy service selection.

There are also some studies which have explored the importance of integrating

both subjective and objective trust. Authors [42] provide a framework for

evaluating customer satisfaction. Here, the authors define trust as soft trust and

hard trust. The model assesses hard trust using a certification scheme and soft trust

using user feedback. Paper [43] suggests multi-dimensional trust-aware cloud

service selection. The framework evaluates trust based on the evidential reasoning
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approach that integrates both perception-based trust value and reputation-based

trust value. Paper [44] present an adaptive trust management model which

combines the rough set and Induced Ordered Weighted Averaging (IOWA)

operator for evaluating the performance of cloud services based on multiple

attributes. Paper [45] propose a hybrid model for dynamic evaluation of trust and

reputation in cloud services. The authors calculate trust based on user feedback

and broker monitor service, and malicious user feedback rating area is detected

using control charts. Paul [46], recommends a trust model based on past credential

and present capability of the service provider. The approach combines SLA

parameters and service provider capability for the evaluation of trust parameters.

Paper [7] propose a context-aware service selection based on subjective and

objective assessment. Here, the authors used objective assessments as benchmarks

to filter out biased, subjective evaluations. Paper [47] propose a framework,

SelCSP, which combines the trustworthiness and competence to estimate the risk

of interaction. The model determines service trust based on the context of service

delivery and feedback. Paper [19] propose an integrated trust evaluation method

via combining objective trust assessment and subjective trust assessment. A

mathematical model for comprehensive trust evaluation is proposed [48] by

extracting SLA parameters.

However, the above proposals did not consider the influence of the user

preference, context, and unfair ratings on the service performance evaluation. From

the literature review, it is evident that more works are needed on trust management

system integrating both subjective and objective trust for the cloud model.

Compared to the existing works, the proposed framework TMM considers various

factors which can influence the effectiveness and accuracy of service evaluation and

selection. TMM provides a realistic trust assessment, not biased to cloud users or

CSPs while being computationally simple.

3 Design of the Proposed Trust Evaluation Framework: TMM

As mentioned earlier, the principal actors are Cloud Service Provider, Trust

Management Middleware, and Cloud User. The system can be viewed as a three

layer architecture where CSP is at the bottom layer, TMM the middle layer, and

CU at the top. TMM interacts with both CU and CSP and selects trusted cloud

service for the request. The architecture of the proposed model TMM is shown in

Fig. 1. The main architectural requirements of the work depend on the three

layers, namely CU, TMM, and CSP. From the CU perspective, the primary

requirement is a simplified interface with the adaptability that should address QoS

preference and service functions. Also, a user needs QoS enabled and scalable

service selection framework ensuring trust. From the perspective of CSP, the

requirements are service monitor tool and secure database to store and manage

trust vectors associated with each service. Finally, TMM should have the

capability of evaluating both objective and subjective trust to recommend the most
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trusted cloud services to the user. The details of the TMM are introduced as

follows:

Preprocessor The preprocessor parses CU request and identifies the necessary

QoS parameters required for the selection of cloud service. A CU may specify QoS

parameters such as privacy, security, response time, availability, and cost along with

their preference. The preprocessor does natural language processing at a minimal

level using syntactic analysis to find QoS parameters and the associated preference

value. To achieve this, tokens are extracted from the request by providing word

boundaries. The extracted tokens are compared with QoS parameters stored in the

array. Then the preprocessor prepares the service selection query using JavaScript

Object Notation (JSON) [49]. We use JSON format compared to XML because

JSON maps directly into data structures used by most of the prominent

programming languages. A formal definition and format of the service selection

query are given below.

Definition 1 A cloud service selection query Q is in the form

\q1; v; p[ ;\q2; v; p[ ; . . .;\qm; v; p[f g, where qi denotes ith QoS parameter,

v denotes the expected value, and p denotes the priority or preference.

Service Selection and Filtering Cloud service selection maintains a trust

database, TrustDB, which lists the services with the computed trust value. TrustDB

has an entry for each cloud service registered. The proposed service filtering

Fig. 1 Trust evaluation framework
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algorithm filters the available cloud services based on the cumulative trust value for

the recent time slots and returns top-k cloud services.

Service Monitoring We use the QoS metrics definition and calculation methods

are given in [50] for the service monitor. The proposed trust evaluation framework

using standard and well-established mechanism for service monitoring which

monitors the QoS of service delivery. For cloud service monitoring, a variety of

tools like CopperEgg (https://app.copperegg.com), Amazon CloudWatch (https://

aws.amazon.com/cloudwatch) could be adapted.

Cloud User Feedback CU feedback is collected through a form with series of the

questionnaire. For example, ease of use, customer support, failure meet, response

time and others. Cloud user is given options to rate each QoS parameter as poor,

average, good and excellent. Each answer is mapped into the real interval [0, 1], and

is stored in the feedback database. User rating is subjective evidence towards the

quality of service delivery [51] and is essential in a business model.

Credibility Checking The Credibility Checking module had an interface to collect

feedback directly from users in the form of history records and stored them in the

feedback database. In this paper, a novel covariance based approach to check the

credibility of CU feedback is proposed. Similar users are identified using covariance

and outliers are removed by Cumulative Sum (CUSUM) control charts [52].

Trust Assessment and Revision Trust assessment and revision is an important

component of the framework. The module uses OTE and STE algorithms to

determine the transaction level trust value. Each service invocation is recorded in

the TrustDB along with evaluated aggregate trust value. The aggregate trust value of

each service is maintained as a trust vector in the TrustDB. It contains the computed

trust value using the proposed algorithms which can act as base for further trust

related decisions. The format of the trust vector is (Transaction ID, Timestamp,

Service ID, User ID, CSP ID, Trust Value). The proposed algorithm OTE in

Sect. 3.1 uses a novel approach to calculate objective trust by assigning dynamic

weight to the measured QoS using prioritization operator. Assigning weight

according to the satisfaction level of the most prioritized QoS attribute in trust

calculation is one of the important contributions in this paper. The calculation of

subjective trust is based on CU feedback and the credibility of feedback is verified

using the proposed covariance based algorithm.

Service Registration The CSPs deploy their services in the cloud and advertise

through the web giving different QoS configurations along with cost. In general, a

CSP may list various QoS parameters such as flexibility, transparency, security,

tenant support, the level of control, ease of use, availability, scalability, billing

procedure and other SLA parameters in the website. CSP can register services in the

service directory, along with necessary information. The TMM evaluates the

requesting CSP using the CSA [1, 53] recommendations. Once the evaluation

procedure is completed, the TMM makes an entry in the TrustDB with an initial

trust value to the services offered by the requesting CSP.The initial value gets

modified after each invocation of the cloud service. Any new CSP must gradually

build its trust value by offering good performance and QoS [54].

72 J Netw Syst Manage (2019) 27:66–92

123

https://app.copperegg.com
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch


www.manaraa.com

Database TMM maintains two databases namely TrustDB and FeedbackDB.

TrustDB stores each transaction with its identity, the respective CSP ID, invoked

service ID, CU location, CU QoS priority, timestamp, and transaction trust. Here,

ID stands for identity. For each transaction, CU feedback is collected and stored in

the feedback database. Each record has information of CU ID, service ID,

transaction ID and a feedback rating of each QoS parameter. Feedback database is

essential for checking the credibility of a CU current feedback.

3.1 Objective Trust Evaluation (OTE)

Service monitor evaluates objective trust using the evidence collected against QoS

monitoring as per SLA. According to [46], while calculating objective trust the

model considers many QoS attributes such as CPU percentage, disk read

throughput, disk write throughput, and network bandwidth. Service monitor

performs trust evaluation based on measuring the performance of these attributes

as per the SLA. Server side QoS provide indications of the service capabilities and

client-side QoS provide realistic quality of experience [32]. QoS metric that

depends on user experiences such as response time, latency and failure needs to be

measured on the client side. QoS metric like CPU percentage, disk read throughput,

disk write throughput, and network bandwidth is measured from server side by

monitoring VM usage. The trust evaluation models discussed in Sect. 2, assigned

static weight to QoS parameters for all invocations of the service irrespective of the

context of service delivery. The proposed TMM allocates dynamic weight to each

QoS parameter by using prioritization operator [27], as CU preference of QoS

parameter plays a vital role in the QoE.

Here, we discuss in detail the objective trust evaluation algorithm. For a CU

request Ri, the preprocessor identifies a set of m QoS parameters and transforms the

given request into service selection query as in Definition 1. The proposed

algorithm OTE partitions the set Qi into a h number of subsets using the CU priority

of the QoS parameters. Each subset contains QoS parameters having equal priority,

and are numerically ordered based on priority as Pi1 [Pi2 [ ::[Pih. The set Pi1

contains higher priority QoS parameters than Pi2. Then the algorithm OTE maps

priority value into the real interval [0, 1]. For each QoS parameter in the priority

class Pih, the algorithm determines the satisfaction level by the proposed Eq. (1).

Satisfaction level, u, clearly indicates whether the quality of the intended QoS

parameter meets the expected level according to SLA objectives against the

monitored performance measurement.

u qh
im

� �
¼ 1� E qimð Þ �M qimð Þ½ � � 0:1 ð1Þ

Satisfaction level of a QoS parameter indicates the difference between

anticipated performance EðqimÞ and the monitored performance MðqimÞ, of the

concerned QoS parameter. We multiply the difference with a percentage value of

ten to normalize the satisfaction to the real interval [0, 1] for uniformity of further
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calculation. The service monitor measures the quality of each parameter in the

interval [1, 10], and the least difference between parameters will indicate better

performance. For example, for the first invocation of a specified service assume that

anticipated response time is 3 and monitored time is 4. Then the difference in the

values of response time is 0.1, after converting to the real interval. Now, for the next

invocation of the same service, assume the difference in the values of response time

is 0.3. Here, the first value (0.1) indicates better performance compared to the

second one (0.3). The better value should always result in good satisfaction level.

To include this concept, subtract the resultant difference from numeral one to

normalize it in the interval [0, 1]. Therefore, the final satisfaction for the response

time in the above two examples is 0.9 and 0.7 respectively. Hence, according to the

proposed approach, a larger satisfaction indicates better performance. After

determining the satisfaction level, the algorithm OTE assigns weight to each QoS

parameter.

The proposed dynamic weight assignment method depends on the satisfaction

level and the priority class of each chosen QoS parameter for the service requested.

The weight assigned to a lower priority QoS parameter depends on the satisfaction

of the higher priority QoS parameter. To assign weight to the QoS parameters, at the

beginning select the least satisfaction level from each priority class q by the

proposed Eq. (2).

Lq ¼ min uðqh
ijÞ

� �
; 1� q� h and 1� j�m

n o
ð2Þ

For each priority class q, find the satisfaction value and this is the minimum

satisfaction value of the QoS members of that class. Next, assign weight to each

priority class by the proposed Eq. (3).

Wh ¼
1 if h ¼ 1
Qh�1

i¼1 Li if h[ 1

�
ð3Þ

The method allocates equal weight to all QoS parameters members of a priority

class. As per the Eq. (3), always a high weight factor, one, is assigned to the high

priority class. For any lower priority class, the weight factor will be depending on

the satisfaction level of QoS parameters in all higher priority classes compared to

the said QoS parameter considered. For example, the method gives weight one to

the top priority class Pi1 always. Now, assume that Pi1 has two equal priority

attributes and their satisfaction values are 0.7 and 0.9. Now, the weight of Pi2 will

depend on the least satisfaction level of Pi1, and it is 0.7. Finally, algorithm OTE

quantifies objective trust as the sum of products of satisfaction factor and the weight

factor of each priority class by the proposed Eq. (4). The details of the objective

trust calculation procedure are formalized in Algorithm 1.

OT Sj

� �
 sum u qh

ij

� �
� wi;h

� �
ð4Þ
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Algorithm 1: Objective Trust Evaluation (OTE)
Input: User request Ri and selected service Sj

Output: Objective trust for the service Sj

1 Initialize Qi = {qi1, qi2, . . . qim} ;
2 foreach Pih ∈ Pi do
3 foreach qij ∈ pih do
4 u qhim

) ← 1 − [E (qim) − M (qim)] ∗ 0.1;
5 end
6 Lih ← min u qhim

))
;

7 end
8 Initialize wi1 ← 1 and wi2 ← Li1 ;
9 foreach q ∈ (3, h) do

10 wiq ← wi(q−2) × L(q−1) ;
11 end
12 Initialize OT (Sj) ← 0 ;
13 foreach Pih ∈ Pi do
14 Temp ← 0;
15 foreach qij ∈ pih do

16 Temp ← Temp +
(
u

(
qhij

)
× wi,h

)
;

17 end
18 OT (Sj) ← OT (Sj) + Temp;
19 end
20 Return (OT )

OTE works as follows. Lines 2–7 compute the satisfaction level of a QoS

attribute (u) and each priority class (L) by the equations for u qh
im

� �
, Lih. Lines 8–11

updates the weight parameter value for each QoS attribute dynamically based on the

satisfaction level for the present service invocation. Lines 12–19 do the calculation

of objective trust through the substitution of previous values. We now summarize

the effect of OTE algorithm and its reliability as follows.

Lemma 1 Consider an invocation of OTEðRi;Qi;Pi; SjÞ where Sj is available. Let

OT denote the value returned by OTE. Then, at the iteration number i of the outer

loop of lines 12–19, the variable OTðSjÞ holds the sum of the weighted trust values

of first i priority classes P1 to Pi.

Proof Let the variable i, represent the number of iterations of the loop over the

number of priority classes h. The initial value of OTðSjÞ ¼ 0 is trivial, prior to the

first iteration of the loop. If the loop invariant holds true before step i, then it will be

true before step ðiþ 1Þ. Suppose that priority class i has r number of QoS attributes.

In the ith iteration, the lines 15–17 compute the sum of trust values of QoS attributes

in the priority class i as defined Eq. (4) by the following expression,

Tempi ¼
Xj¼r

j¼1
u qh

ij

� �
� wi;h

Then,
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OTðSjÞi ¼ OTðSJÞi�1 þ Tempi

Hence, after i number of iterations, the variable OTðSjÞ holds the sum of weighted

trust values of first i priority classes. Similarly, after ðiþ iÞth iteration, the objective

trust computation statement is OTðSjÞiþ1 ¼ OTðSJÞi þ Tempiþ1, which shows the

maintenance of loop invariant. Consequently, at the end of i ¼ h iteration, the

variable, OTðSjÞ, holds the sum of h priority classes satisfying the loop invariant. h

Lemma 2 Given a cloud service invocation ðSj;Q;PÞ, algorithm OTE computes

the objective trust by assigning optimal weight value to each QoS based on the

satisfaction level.

Proof The result of OTE depends on the cardinality of QoS set, R Qj j, and
the number of priority classes, S Pj j. The OTE algorithm consists of the

following operations: first, the satisfaction level for each QoS attribute and

priority class is determined. Second, dynamic weight is assigned to each priority

class based on the satisfaction level. For each QoS parameter the satisfaction level

is determined using the expression, u qh
im

� �
 1� E qimð Þ �M qimð Þ½ � � 0:1, which

is the difference between experienced QoS value and anticipated value. Since the

number of QoS chosen for each service is finite, line numbers 2–11 induces only

finite computational cost. The core statements (line numbers 12–19) finding the

objective trust is finite in terms of the input size as per the Lemma 1. The time

complexity of line numbers 2–19 is quadratic and given by OðR2Þ which will

happen when S ¼ R. Consequently, the algorithm is scalable and reliable

regarding the size of input data. h

3.2 Subjective Trust Evaluation (STE)

The CU feedback indicates the trustworthiness of a CSP based on QoE. Since cloud

model has evolved as a business model, trust establishment through user feedback is

necessary and essential. The system maintains cloud user feedback repository along

with contextual information of service experience. A record in the feedback

database has fields for storing transaction ID, service ID, user ID, region, timestamp,

QoS parameter, experienced feedback for QoS parameter, the order of QoS

parameters. The model differentiates a CU as known or unknown CU, depending on

the past transaction history. A known CU has previous feedback in the repository for

the same instance of the service invocation.

Definition 2 A similar cloud user is defined as one who has experience with the

requested cloud service instance in the respective context.

Definition 3 The degree of similarity of feedback behavior is defined as affinity

ratio which is calculated as the fraction of total similar users to total users in the

feedback DB for the opted cloud service.
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As per Definition 2, the similar user is one who has invoked the same cloud

service in the past, and the feedback is recorded in the feedback DB. From the

FeedbackDB, feedback of similar users is retrieved. Let UFi, denotes the set of all

similar user feedback for the service Si and Fi denotes the set of feedback made by

the user for the same service. The algorithm measures the variance of current

feedback from both Fi and UFi. Depending on the variance, credibility of current

feedback is assessed, and subjective trust is evaluated accordingly. The approach

considers each CU feedback as a continuous random variable, following a normal

distribution. The joint distribution of any two normal random variables is also a

normal distribution. The common expectation of any two random variables Xi and

Xj, in general, is defined in the literature [55] as:

Xm
i ;Xn

j

� �
¼
ZZ

1
xm

i xn
j f ðXi;XjÞdxdy ð5Þ

The covariance between Xi and Xj can be calculated as in [23]:

cov Xm
i ;Xn

j

� �
¼ E Xm

i Xn
j

h i
� E Xm

i

� �
E Xn

j

h i
ð6Þ

Normalize the covariance to correlation coefficient q which depicts the

relationship between any two users in the set and q is defined as per [55] as,

q ¼
cov Xm

i ;Xn
j

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Xm

ið Þvar Xn
j

� �r ð7Þ

Outliers are removed using CUSUM control charts. CUSUM chart depicts the

deviation of each variable from the target variable. The method determines pairwise

correlation coefficient of all random variables involved in the scene. The variable q
gives the linear relationship between random variables. A positive q indicates the

relationship is growing in the positive quadrant and negative q in negative quadrant.

Now, find the total user affinity ratio as the count of users in the positive quadrant to

total users in the entire scene. Let Pr denotes the count of the positive relationship of

user i and Nu be a total number of users in the scene. As given in Definition 3, user

affinity ratio is calculated as

d ¼ Pr

Nuser

ð8Þ

It may be noted that 0� d� 1. The affinity ratio gives a percentage of how many

similar users have made the same opinion as for the current user. A user affinity

ratio, d\0:5, indicates that user feedback has more deviation from similar users and

will have a negative effect on the user trust value and feedback. Over k timeslots,

the aggregation of past feedback of d users as,
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fp ¼
XPr

i¼1

Xk

t¼1
ufit � ert ð9Þ

An exponential decay function is used to reduce the impact of accumulated past

feedback over the period. An unknown user does not have a history of feedback, and

the trust value will depend only on the affinity ratio. For a known user the

framework may have past feedback. Here, both user affinity ratio and the past

feedback will have an influence on the trust value computed.

STðSjÞ ¼

/uf � dfp unknownuser

/uf þ 1� /ð Þ

Pk

t¼1
Ft

ij

k
� d knownuser

8
>><

>>:
ð10Þ

Here, uf stands for the current feedback of the CU and / denotes the significance

of current feedback. The ideal value of / is determined by running the experiment

many times, and the value which gives high performance is taken as an optimum

value. The second term in Eq. (10) denotes the aggregate of CU feedback for the

same service over k timeslot. The third term indicates how similar users are given

feedback for the same service which is the product of the percentage of similar users

and their aggregate feedback. If d falls below the threshold value, then there will be

a negative impact on the subjective trust value and the product is subtracted.

Subjective trust is cumulative and malicious feedback cannot have a great impact on

the final trust and reputation of a cloud service. The discussions regarding subjective

trust evaluation are summarized in Algorithm 2.

Algorithm 2: Subjective Trust Evaluation (STE)
Input: User request Ri, the QoS set Qi, Priority Pi, selected service Sj , user current feedback fc, and feedback

database
Output: Subjective trust for the service Sj

1 Initialize UF, F, δ, Pr, fp = 0.0 ;
/* K is the set of time slots considered */

2 foreach CU ∈ Pr and t ∈ K do
3 fp ← fp + sum ufCU

t

) × e−rt ;
4 end
5 foreach f ∈ F do
6 fu ← sum (f);
7 end
8 f̄u ← fu

|F | ;

9 δ ← Pr/ |UF |;
10 if δ > 0.5 then
11 f̄p ← δ × fp
12 else
13 f̄p ← − (δ × fp)
14 end
15 if KnownCU then
16 ST (Si) ← φf + (1 − φ) f̄u + f̄p
17 else
18 ST (Si) ← φf + f̄p
19 end
20 return ST (Si)

The proposed covariance based approach to find similar CUs is efficient because

covariance is a proven statistical approach to find similarity. Also, everything in
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nature is supposed to follow Normal distribution and outliers can be easily detected

using CUSUM control chart.

Lemma 3 Given a service invocation Sj and associated feedback fc, algorithm

STE effectively computes subjective trust.

Proof The preprocessing steps remove the outliers regarding the feedback

distribution and computes affinity ratio based on Definitions 2 and 3. Suppose

that feedback history of each similar user is randomly partitioned into t time slots

ð1� t�KÞ to regulate the significance of recent feedback. Statements from 2 to 4

determines the sum of similar user feedback as defined Eq. (9) by the expression,

fp ¼
Xr

j¼1

XK

t¼1
uf r

t

� �
� e�rt

As long as outliers in similar feedback are eliminated properly by d and temporal

decay function, the number of similar users r is finite and induces only finite amount

of computation cost of quadratic. Requester’s similar feedback is also determined

and sum is calculated by the expression

fu ¼
Xl

j¼1
fj

where l denotes the self-similar service invocation history. Since users are classified

in a fine-grained manner based on Definition 1 and malicious feedback is eliminated

using CUSUM charts, bad feedback sequences are very rare. The user affinity ratio

d decides whether the sum of similar user feedback has a positive or negative impact

and fix the value �fp accordingly (line number 10–14). A malicious positive feedback

or negative feedback identified based on both similar user and own feedback history

by fp  fp þ sum uf CU
t

� �
� e�rt and fu  sum fð Þ. The user affinity ratio determines

the impact of malicious feedback as: �fp  d� fp or �fp  � d� fp

� �
. Based on

previous computation results, the subjective trust for present invocation of the

service Sj is determined as one of the ways: ST Sið Þ  /f þ 1� /ð Þ �fu þ �fp (if the

user has a previous feedback history) or ST Sið Þ  /f þ �fp (if the user is making his

first invocation) satisfying the postcondition. Since the bad sequences from the

feedback history is eliminated properly, the algorithm computes subjective trust

effectively. Hence, algorithm STE is reliable as it transforms the input condition to

the postcondition of the algorithm. h

3.3 Trust Assessment and Revision

Trust is associated with a service and thereby with its provider. Trust can be

combined from different sources for making a better decision [42]. In this

framework, trust is computed as the sum of the objective trust which reflects the

monitored performance and subjective trust based on the CU feedback. The model

finds the trust value Tof ith service Si from jth provider CSPj at timestamp t as,
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Tt
Si
¼ b� ST Sið Þ þ 1� bð Þ � OT Sið Þ ð11Þ

where ST refers to subjective trust and OT refers to objective trust. From the

simulation experiments, TMM finds the optimal value of b as 0.6. A non-zero value

of b implies that user feedback always has a positive impact on the final trust value.

Transaction level trust is evaluated using Eq. (11) and this will contribute to the

final aggregate trust of the concerned cloud service and the respective CSP.

3.4 Service Selection

For a CU request, the service selection algorithm uses transaction level trust and

context information, to find the most suitable subset of service providers. First,

transactions with matching spatial context are retrieved from the database. From the

reduced search space, the algorithm considers past interactions in the interval,

1� t� k. Now, assume that there exists S providers offer the requested service Si.

The algorithm calculates the Compound Trust Value (CTV) of each cloud service

provider CSPj on a specific cloud service Si using the newly defined equation,

CTVCSPj
Sið Þ ¼

1

n

Xk

t¼1
Tt

Si

 !

ð12Þ

The value of CTV is changed after each time window k. We assume that within each

time window n invocations of cloud service Si. CTV reflects the global trust value

for the CSP in the recent time window. The transaction level trust for matching

CSPs are retrieved from the repository. After calculating the compound trust rating

of all available S CSPs who offer service Si, TMM has at most S alternatives. Based

on the CTV, alternatives can be ranked. Hence, TMM recommends top-k trusted

cloud services. If CSPs maintain a stable performance, then they will have a

stable trust value over the time slots and will have a good reputation.

4 Experiments

This section provides an evaluation of accuracy and efficiency of the proposed trust

evaluation framework TMM through simulation and comparison of the performance

of few relevant schemes. Accuracy shows how accurate was the trust calculation

and efficiency indicates the competency in performance compared to relevant works

in the literature.

Experimental Setup Java based simulation environment is built by using

NetBeans IDE 8.1. The simulation environment is run on the machine with 14.0 GB

RAM, Intel core i7-4790 CPU@ 3.6 GHZ.

Dataset Description To evaluate the trust calculation accuracy and efficiency of

service selection, TMM uses WSDREAM dataset#2 [32]. This data set has a

response time and throughput from 142 users on 4500 services in 64 different time

slots. The format of the dataset is (User ID, Service ID, Time Slice ID, Response

Time (sec), Throughput (kbps)). The main limitation of this dataset is that it
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includes only two attributes namely response time and throughput. To assess the

computational efficiency and scalability of TMM varying the number of QoS

attributes, we have generated a synthetic dataset following the format of

WSDREAM dataset with ten QoS attributes using faker package of Python. CUs

give their feedback of QoS parameters for the opted service, and the SLA

monitoring data is randomly generated from a certain range of values depending on

the industry practice. All simulation experiments were performed and the results are

validated using the WSDREAM dataset#2.

4.1 TMM Evaluation and Discussion

The performance of TMM is analyzed from two directions [36], accuracy and

efficiency. A set of experiments under various conditions were performed to

evaluate the accuracy and effectiveness of the proposed framework TMM. The

principal aim of the implementation is to assess how accurately TMM recommends

the top-k trusted services matching with CU request.

TMM analyzes the transactional behavior of both CUs and CSPs. The evaluation

of OTE and STE algorithms are carried out within a fixed and consecutive time

intervals. According to the SLA, a CSP assures a certain level of performance

quality of its service. We consider the most relevant QoS parameters as per the

literature [8], such as the availability, reliability, response time, security, privacy,

and customer support, to evaluate objective trust. The OTE algorithm is evaluated

based on measuring these parameters as per the SLA.

The model measures transaction trust value from the two aspects as explained in

Sect. 3, objective trust and subjective trust. The inclusion of CU priority in the

calculation of objective trust augments the performance of TMM. Dynamic weight

is assigned to each QoS attribute monitored as per the satisfaction of the

performance. As subjective trust depends on the trustworthiness of CUs, more

priority is given to service monitor feedback. The parameter b fixes the relative

significance of objective trust and subjective trust in final transaction trust

computation. The value of b lies in the range, 0� b� 1. The ideal value of b is 0.3

at which trust evaluation has the highest accuracy as shown in Fig. 2a, and it

indicates that inclusion of user opinion always improves the accuracy of trust

(a) (b)

Fig. 2 Optimal value of regulating parameters. a Regulating parameter beta. b Regulating parameter Phi
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calculation. This indicates that 70% priority is given to objective trust value and

30% to subjective trust value.

Subjective trust is evaluated based on the CU feedback. More priority is given to

current feedback as the real assessment is reflected more in the present usage of

service. The parameter / determines the relative priority of current user feedback

and previous feedback. The model decides the optimal value of the variable /
through repeated experiments. Figure 2b displays the various values of / and

observe that typical value is 0.6 giving optimal performance. Subjective trust

evaluation shows better accuracy at this value. This indicates that 60% of priority is

given to user current feedback and 40% to previous feedback. The optimal values

for both regulating parameters are obtained by performing the trust calculation

procedure using both WSDREAM dataset and synthetic dataset. Since, the values of

both phi and beta are independent of the number of QoS arguments, the outcome

was same.

Trust values are mapped into the interval [0,1]. The uncertainty of trust value

increases as it approaches 0.5 and decreases as it reaches 0 or 1. The trust value

closer to 0 or 1 is treated as a certain value. Otherwise, the trust value has more

uncertainty and maximum uncertainty at 0.5 trust value. Therefore, we have defined

three levels of trustworthiness of a CSP namely level 0 (trusted), level 1 (non-

trusted), and level 2 (arbitrary) during the simulation. As mentioned earlier, SLA

monitoring values were synthetically generated depending on the trust level of the

selected CSP. The simulation is carried out with 100 fixed time slots. The

interactions of a CU follows uniform distribution in [0,25] for each time slot. CUs

give their feedback as a rating and is converted into the real interval [0,1]. We

simulate 10,000 CU requests and out of which 80% trustworthy, 10% untrustworthy,

and 10% arbitrary. We have opted 80% of CSPs as trustworthy because cloud

computing is a business model and most of the CSPs are likely to be trustworthy.

Table 1 shows the percentage of CU interactions with the three types of CSPs.

With trustworthy CSP the percentage of successful interaction will be more. This

indicates the significance of finding a trustworthy CSP for the CU request. TMM

identifies between level 0, levels 1 and 2 CSPs in the simulation. Also, with the use

of algorithms OTE and STE, TMM maintains trust scores for each level of CSPs

accurately. We have simulated the service selection with TMM and without TMM,

for evaluating the rate of successful transaction. The results in Fig. 3 shows that

there is a linearly increasing rate of successful interaction with the proposed

middleware TMM because with an increase in time slots TMM gradually builds and

maintains stable trust scores with trusted CSPs. This shows the effectiveness of our

method.

Table 1 Interaction with CSP
% Interactions Level 0 Level 1 Level 2

Successful 92 a = [0–49] b = [25–75]

Uncertain 5 14 20

Unsuccessful 3 100-a-14 100-b-20
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Similarly, we classify CUs into three categories: honest, uncertain and non-

honest. An honest CU is trustworthy and provides 90% of the time true and honest

feedback. A non-honest CU is not trustworthy, and the fraction of true feedback and

malicious feedback given by him falls in the range [0–50]. An uncertain CU is

randomly categorized as honest and non-honest; the percentage of true and

malicious feedback falls in the range[25–75]. For example, consider the number of

transaction is 10. Then, an honest CU will give true feedback for nine transactions,

and non-honest CU will give five true feedback. Uncertain CU will be randomly

switching between honest and non-honest behavior. With this assumptions, our

covariance based algorithm detects malicious CU feedback effectively as shown in

Table 2 and FB stands for feedback.

During the simulation of TMM, we have calculated both objective trust and

subjective trust of a transaction. Experiments were carried out with all levels of

CSPs and introduced malicious rating to check the accuracy of TMM. Figures 4

and 5 show the results in detail. From the results shown in Fig. 4, it is clear that

objective trust of trustworthy CSPs has a stable and high value and untrustworthy

CSPs have low objective trust value. For arbitrary CSPs, the trust value oscillates

between trustworthy and untrustworthy as per the real environment. The calculation

of subjective trust as in Fig. 5, for trustworthy CSP always have a high subjective

trust value, and untrustworthy CSP has very low trust value ð\0:2Þ. The results

show the accuracy of TMM in handling all types of CSPs and CUs.

Service selection process is done by calculating the CTV of matching cloud

services. The aggregate value (CTV) of trust enables TMM to rank similar cloud

services. For example, while processing a CU request matching CSPs can be ranked

Fig. 3 Rate of successful interactions

Table 2 CU feedback credibility

Type of CU % True FB % Malicious FB % Malicious FB detected

Honest 90 10 90

Uncertain [25–75] [25–75] 70

non-honest [0–50] [0–50] 75
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using CTV, and the results for a particular request is shown in Fig. 6. TMM filtered

fifteen CSPs offering the same instance of the requested cloud service, and CTV of

each CSP is determined. Now, TMM will be recommending only those CSPs whose

CTV is higher compared to candidate CSPs, and it is CSP1, CSP8, CSP13, CSP12,

and CSP6 in the case of top-5 recommendation.

Fig. 4 Objective trust

Fig. 5 Subjective trust

Fig. 6 Compound trust value (CTV)
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The accuracy of the service selection process with the inclusion of contextual

information is compared to one without context, which is shown in Fig. 7. Here,

context mainly focuses on the CU priority and dynamic weight assignment scheme.

From each time slot, the algorithm picks only those alternatives which meet the

minimum performance criteria as per the Eq. (11). The above selection considerably

reduces the runtime of the algorithm.

Another set of experiments were carried out to determine the time efficiency and

scalability of the proposed model TMM. The computation time of TMM is the sum

of preprocessing of the user request, OTE, and STE. The complexity of OTE

algorithm is O(hm), where h denotes the number of priority classes and m denotes

the number of QoS attributes. The worst case complexity is Oðm2Þ, where each QoS

belong to a unique priority class. The complexity of STE is O(Ku), where K denotes

the number of time slots and u denotes the number of user feedback in each slot. We

first measured the mean execution time varying the number of CU request profiles

with fixed services (1000) and attributes (10). For each value, the experiment is

carried out repeatedly fifty times, and the average is taken as the final value. Next,

we carried out experiments for measuring mean execution time varying the number

of cloud services with a fixed number of QoS attributes (10) and requests (500).

These numbers are limited by the dataset used for the experiment. The results are

shown in Fig. 8 which proves the scalability and time efficiency of TMM.

To evaluate the robustness of the proposed STE concerning malicious behaviors,

TMM measured the percentage of honest rating and malicious rating correctly

identified. Malicious users may give their feedback values with a mean value (of the

Normal distribution) different from the honest users. Figure 9 shows the percentage

of honest and malicious rating correctly identified using the proposed algorithm

STE.

The above results show the accuracy and effectiveness of TMM as a middleware

in performing trusted cloud service selection.

4.2 Performance Comparison

The proposed model TMM is compared with three well-known and similar

frameworks mentioned in Sect. 2: (i) SLA based trust evaluation framework [31],

Fig. 7 Number of CU request profiles versus precision
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(ii) Adaptive trust management model using induced weighted averaging operator

and rough set (AIOWA) [44], and (iii) QoS-based approach for finding the trust

value of a service [46]. Paper [44] determines transaction trust by using two

adaptive modeling tools, rough set and AIOWA operator. However, both methods

assign weight function statically. Authors in [31] used SLA-aware model to

determine the trust and reputation of cloud services. Trust is calculated based on

QoS attributes such as availability (AV), reliability (RE), turnaround efficiency

(TE), and data integrity (DI) in [46]. Author determines transaction trust value as:

QT ¼ w1 � AV þ w2 � RE þ w3 � DI þ w4 � TE ð13Þ

where wi denotes weight assigned and w1 þ w2 þ w3 þ w4 ¼ 1.

The major difference is TMM employs dynamic weight assignment to QoS

attributes based on CU context while calculating objective trust and the covariance

method for checking user credibility. To compare the performance of proposed

TMM with the well-known frameworks [31, 44, 46], experiment is carried out with

t ¼ 1; . . .; 25 fixed time slots. CU requests are randomly generated using exponen-

tial distribution. For each timeslot, requests are generated in the range [5, 25]. The

experiment is repeatedly carried out for both trustworthy and untrustworthy CSP.

Fig. 8 Mean execution time of TMM varying with the number of CU profile and number of cloud
services

Fig. 9 Credibility of feedback identified
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The performance of TMM is compared using two significant metrics namely Mean

Error Rate (MER) and Transaction Success Rate (TSR). MER is calculated as the root

of squared error between calculated trust and Real Trust (RT), for the set of N CSPs.

MER ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1
RT � Ti

SPj

� �
vuut ð14Þ

Real trust is the ideal trust value which has the ideal performance level as per the

SLA and is calculated for each transaction. In the literature, few works calculate the

ideal trust value by prediction procedures using historical records and calculate the

root mean square error using this value. But, we find the ideal trust by giving the

maximal value for each QoS and the best feedback. The ideal trust value falls in the

range [0.9,1]. We simulate both the level 0 and level 1 CSPs. In the case of a level 0

CSP, 90% of the total transactions are trusted and have successful interaction,

whereas level 1 CSPs the percentage of successful interactions is [0, 49]. For

arbitrary CSPs, the trustworthiness is not clearly defined and will be fluctuating

between trustworthy CSP and untrustworthy CSP. Hence, we consider only level 0

and level 1 CSPs for the comparison. Figures 10 and 11 shows that TMM is more

stable and has low error percentage in the final trust calculation compared with the

other two methods.

In the case of trusted CSP, the error rate is \ 16% for trusted cloud users and

\ 25% for untrusted cloud users. Trusted CSPs and trusted CUs are the perfect

combinations which give optimum result. Each time slot shows a variation in MER

due to the difference in user preference and network condition.

Figures 12 and 13 illustrates the variation in MER in the event of untrustworthy

CSP considering both trusted and untrusted CUs. The difference in MER for

trustworthy CSP and untrustworthy CSP shows that TMM differentiates between

trusted and non-trusted CSPs effectively. Here, MER will be naturally high as

untrustworthy CSPs are more in number. TMM outperforms the other methods with

error percentage \ 25% for trusted CUs and \ 29% for untrusted CUs.

The performance of TMM against the transaction success rate as the number of

malicious feedback increases is verified using TSR. TSR is defined as the ratio of

the number of successful transactions over the total number of transactions in the

Fig. 10 MER with trustworthy CSP given trusted CU
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period considered., which is formally defined in Eq. (15). Let COUNT is a function

to determine the count of successful transactions in the period t, then TSR is defined

as

TSR ¼ COUNTðTsuccÞt
Mt

ð15Þ

where Tsucc represent a successful transaction and Mt denotes the total number of

transactions in the period t.

Fig. 11 MER with trustworthy CSP given untrusted CU

Fig. 12 MER with untrustworthy CSP given trusted CU

Fig. 13 MER with untrustworthy CSP given untrusted CU
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Simulation results shown in Fig. 14 illustrates the efficiency of TMM compared

to the existing works by achieving high TSR. As the percentage of malicious

feedback increases to 90%, TSR of the proposed model is 60%, which is much

better compared to the other two methods(\ 40%). TMM achieves better

performance as it effectively verifies user credibility using STE algorithm.

Simulation results show that TMM has the lowest MER and highest TSR

compared with the other three methods as TMM assigns weight dynamically as per

the functional performance of the cloud service. Hence, the proposed work TMM

improves the accuracy of trust computation by using OTE and STE algorithms.

From the above results, we can see that our method has a more stable performance

compared to the other two methods. Also, the experimental results indicate that with

adequate user interactions the quality of the recommendation is improved as

compared with the other two methods. The performance can be further improved by

considering both CU context and CSP context.

5 Conclusions and Future Work

This paper proposes a dynamic trust management middleware TMM, which is

selecting trustworthy cloud services using the context of service delivery.

Experimental results show that TMM yields result with better accuracy through

the inclusion of contextual information. Two algorithms are proposed in this paper

namely OTE to determine objective trust and STE to determine subjective trust.

Mathematical formulations are provided to quantify the baseline values for both

objective and subjective trust assessment. Algorithm OTE uses dynamic weight

assignment with CU preferences. The credibility of a CU feedback is verified by

user affinity ratio, which is computationally efficient. Moreover, the proposed TMM

is compared with other analogous trust evaluation models. The experimental results

indicate that TMM is more stable and has a low percentage of error in trust

calculation compared with the other two frameworks.

Fig. 14 Transaction success rate
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In future, we need to enhance the performance of TMM by including both CSP

and CU context for trust evaluation. Implementing and evaluating the proposed

model in the multi-cloud environment is another direction of future research.
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